Symmetric configurations for bipartite-graph codes

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco

adav@iitp.ru, giuliet@dipmat.unipg.it, gino@dipmat.unipg.it,

fernanda@dipmat.unipg.it

Institute for Information Transmission Problems Russian Academy of Sciences Moscow, B. Karetny per. 19, Russia Dipartimento di Matematica e Informatica Università degli Studi di Perugia Via Vanvitelli 1, Perugia, 06123, Italy

Literature

T. Høholdt, J. Justesen, "Graph codes with Reed-Solomon component codes," *Proc. Int. Symp. Inf. Theory* ISIT 2006, Seattle, USA, 2006.

A. Barg and G. Zémor, "Distances properties of expander codes," *IEEE Trans. Inf. Theory*, **52**, no.1, 2006.

V.B. Afanassiev, A.A. Davydov, V.V. Zyablov, "Low density concatenated codes with Reed-Solomon component codes," *Proc. XI Int. Symp. on Problems of Redundancy in Inf. and Control Systems,* S.-Petersburg, Russia, 2007.

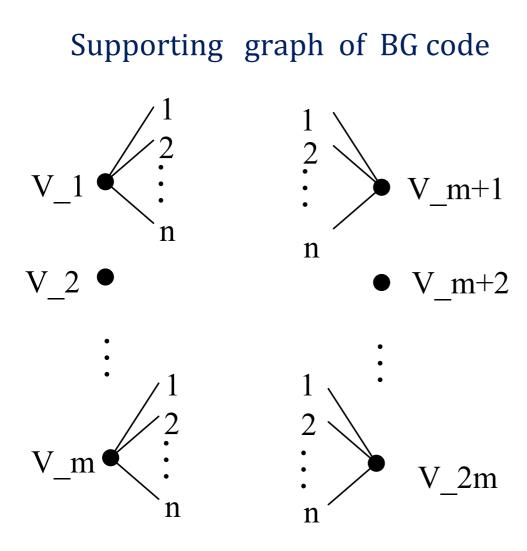
A. Barg and A. Mazumdar, "Thresholds for bipartitegraph codes on the binary symmetric channel," 2008.

Literature

E. Gabidulin, A. Moinian, B. Honary, "Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices," *Proc. Int. Symp. Inf. Theory* ISIT 2006, Seattle, USA, 2006.

J. Xu, L. Chen, I. Djurdjevic, K. Abdel-Ghaffar, "Construction of regular and irregular LDPC codes: geometry decomposition and masking," *IEEE Trans. Inf. Theory*, **53**, no. 1, 2007.

S.J. Johnson, S.R. Weller, "Resolvable 2-designs for regular low-density parity-check codes," *IEEE Trans. Commun.*, **51**, no.9, 2003.



Bipartite-graph code (BG code)

G - an *n*-regular bipartite graph (supporting graph) Classes of vertices: $\{V_1, ..., V_m\}, \{V_{m+1}, ..., V_{2m}\}$ C_t - an $[n, k_t]$ constituent code, $t = 1, 2, \ldots, 2m$ Bipartite-graph code C - an [N, K] code. N = mn**Positions** of a **codeword** of $\mathcal{C} \Leftrightarrow$ **edges** of Gconstituent code $C_t \Leftrightarrow$ vertex V_t :

projection of a codeword of C to the positions noted by n edges incident to a vertex V_t = codeword of C_t

graph $G \Leftrightarrow \mathbf{01}$ -matrix M(m, n)

 ${\cal M}(m,n)$ - square 01-matrix of order m with n units in every row and column

i-th row (*j*-th column) \Leftrightarrow vertex V_i (vertex V_{m+j}) "1" in position $(i, j) \Leftrightarrow V_i$ and V_{m+j} are adjacent

critical submatrix $J_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

graph G is 4-cycle free \Leftrightarrow matrix M(m, n) is J_4 -free

GOAL: to construct J_4 -free matrices M(m, n) with distinct parameters $m, n \Leftrightarrow$ to increase the region of lengths and rates of BG codes

Designs and configurations

symmetric and resolvable non-symmetric 2-(v, k, 1) design (= Steiner system S(2, k, v)) : every pair of elements lies in *exactly* one block

2-(v, k, 1) design $\Rightarrow J_4$ -free matrix M(v, k)

Configuration $(v_r, b_k) \Rightarrow v$ elements, b blocks every block contains k points every element belongs to r blocks every pair of elements belongs to at most one block **Symmetric configuration :** v = b, $r = k \Rightarrow$ J_4 -free matrix M(v, k)

Construction A in PG(s,q)

a single orbit of a collineation group in PG(s,q)

 ${\mathcal P}$ - a point orbit under the action of a collineation group in PG(s,q) or AG(s,q)

 $\mathcal{L}(\mathcal{P},n)$ - the set of lines meeting \mathcal{P} in n points

incidence structure: points = points of \mathcal{P} lines = lines of $\mathcal{L}(\mathcal{P}, n)$ incidence = incidence of the starting space

 $M(m,n) \Leftrightarrow$ incidence matrix, $m = |\mathcal{P}|, n \leq q+1$

Construction A works for any 2-(v, k, 1) design D and for any group of automorphisms of D

Theorem and Examples

Theorem. In Construction A the number of lines of $\mathcal{L}(\mathcal{P}, n)$ through a point of \mathcal{P} is a constant r_n

 $n = r_n \implies J_4$ -free matrix $M(|\mathcal{P}|, n)$

Examples: \mathcal{P} is the set of internal points to a conic; $\mathcal{L}(\mathcal{P}, n)$ is the set of lines external to the conic. $M(m, n): m = \frac{1}{2}q(q-1), \ n = \frac{1}{2}(q+1), \ q \text{ odd}$

 \mathcal{P} is the complement of a Baer subplane of PG(2,q); $\mathcal{L}(\mathcal{P},q)$ is the set of tangents to the subplane. $M(m,n): m = q^2 - \sqrt{q} < n^2, \ n = q, \ q$ square

orbits of a Singer subgroup \widehat{S}_d

Singer group S - the cyclic collineation group of order q^2+q+1 in PG(2,q)

d - any divisor of $q^2 + q + 1$. $t = \frac{q^2 + q + 1}{d}$ \widehat{S}_d - the unique cyclic subgroup of S of order d

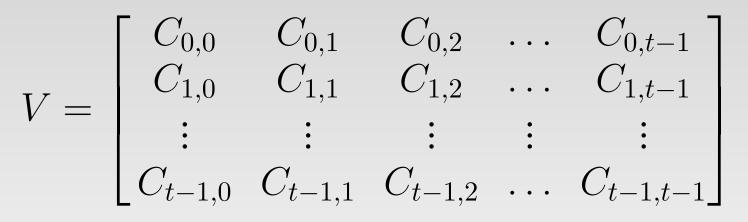
under the action of a **cyclic** collineation group the point set and the line set of a projective plane have the same cyclic structure

 $O_0, O_1, \ldots, O_{t-1}$ - point orbits under the action of \widehat{S}_d $L_0, L_1, \ldots, L_{t-1}$ - line orbits under the action of \widehat{S}_d

Partition of PG(2,q) **into orbits**

Theorem. Every line of the orbit L_i meets the orbit O_j in the same number of points $w_{j-i \pmod{t}}$

Incidence matrix of PG(2,q)



 $C_{i,j}$ - circulant $d \times d$ matrix of weight $w_{j-i \pmod{t}}$

matrix of weights of submatrices

$$W = \begin{bmatrix} w_0 & w_1 & w_2 & w_3 & \dots & w_{t-2} & w_{t-1} \\ w_{t-1} & w_0 & w_1 & w_2 & \dots & w_{t-3} & w_{t-2} \\ w_{t-2} & w_{t-1} & w_0 & w_1 & \dots & w_{t-4} & w_{t-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ w_1 & w_2 & w_3 & w_4 & \dots & w_{t-1} & w_0 \end{bmatrix}$$

Circulant $d \times d$ matrix C of weight w $\downarrow \downarrow$ Circulant $d \times d$ matrix C' of weight $w - \delta$

 $V \Rightarrow V' \qquad W \Rightarrow W'$

an union of orbits of \widehat{S}_d

Construction B in PG(2,q)

 $\frac{m}{d} \times \frac{m}{d}$ submatrix of W': sum of elements of every row and every column = nsubmatrix of V' is a J_4 -free matrix M(m, n)game of blocks (bricks for children) numerous matrices square and non-square n_1 units in every row; n_2 units in every column $n_1 = n_2$ and $n_1 \neq n_2$

Parity check matrix

$$\begin{bmatrix} cI_m & cI_m & \dots & cI_m \\ \vdots & \vdots & \vdots & \vdots \\ cI_m & cI_m & \dots & cI_m \\ cI_m^{(1)} & cI_m^{(2)} & \dots & cI_m^{(n)} \\ \vdots & \vdots & \vdots & \vdots \\ cI_m^{(1)} & cI_m^{(2)} & \dots & cI_m^{(n)} \end{bmatrix} .$$
 I_m - identity matrix

M(m, n) - circulant. $I_m^{(v)}$ - circulant permutation $m \times m$ matrix obtained by decomposition of M(m, n)Constants c are distinct!!! They comes from parity check matrices of the constituent codes:

 $\mathcal{C}_1 = \ldots = \mathcal{C}_m \qquad \mathcal{C}_{m+1} = \ldots = \mathcal{C}_{2m}$

Thank you Mille grazie Spasibo Premnogo blagodarya