Symmetric configurations for bipartite-graph codes

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco
adav@iitp.ru, giuliet@dipmat.unipg.it, gino@dipmat.unipg.it, fernanda@dipmat.unipg.it
Institute for Information Transmission Problems
Russian Academy of Sciences
Moscow, B. Karetny per. 19, Russia
Dipartimento di Matematica e Informatica
Università degli Studi di Perugia
Via Vanvitelli 1, Perugia, 06123, Italy

Literature

T. Høholdt, J. Justesen, "Graph codes with ReedSolomon component codes," Proc. Int. Symp. Inf. Theory ISIT 2006, Seattle, USA, 2006.
A. Barg and G. Zémor, "Distances properties of expander codes," IEEE Trans. Inf. Theory, 52, no.1, 2006.
V.B. Afanassiev, A.A. Davydov, V.V. Zyablov, "Low density concatenated codes with Reed-Solomon component codes," Proc. XI Int. Symp. on Problems of Redundancy in Inf. and Control Systems, S.-Petersburg, Russia, 2007.
A. Barg and A. Mazumdar, "Thresholds for bipartitegraph codes on the binary symmetric channel," 2008.

Literature

E. Gabidulin, A. Moinian, B. Honary, "Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices," Proc. Int. Symp. Inf. Theory ISIT 2006, Seattle, USA, 2006.
J. Xu, L. Chen, I. Djurdjevic, K. Abdel-Ghaffar, "Construction of regular and irregular LDPC codes: geometry decomposition and masking," IEEE Trans. Inf. Theory, 53, no. 1, 2007.
S.J. Johnson, S.R. Weller, "Resolvable 2-designs for regular low-density parity-check codes," IEEE Trans. Commun., 51, no.9, 2003.

Supporting graph of BG code

V_2

n

- V_m+2

Bipartite-graph code (BG code)

G - an n-regular bipartite graph (supporting graph)
Classes of vertices: $\left\{V_{1}, \ldots, V_{m}\right\}, \quad\left\{V_{m+1}, \ldots, V_{2 m}\right\}$
$\mathcal{C}_{t}-$ an $\left[n, k_{t}\right]$ constituent code, $t=1,2, \ldots, 2 m$
Bipartite-graph code \mathcal{C} - an $[N, K]$ code. $\quad N=m n$
Positions of a codeword of $\mathcal{C} \Leftrightarrow$ edges of G
constituent code $\mathcal{C}_{t} \Leftrightarrow$ vertex V_{t} :
projection of a codeword of \mathcal{C} to the positions noted by n edges incident to a vertex $V_{t}=$ codeword of \mathcal{C}_{t}

graph $G \Leftrightarrow 01$-matrix $M(m, n)$

$M(m, n)$ - square 01-matrix of order m with n units in every row and column
i-th row $\quad\left(j\right.$-th column) \Leftrightarrow vertex $V_{i} \quad\left(\right.$ vertex $\left.V_{m+j}\right)$
" 1 " in position $(i, j) \Leftrightarrow V_{i}$ and V_{m+j} are adjacent

$$
\text { critical submatrix } J_{4}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

graph G is 4-cycle free \Leftrightarrow matrix $M(m, n)$ is J_{4}-free
GOAL: to construct J_{4}-free matrices $M(m, n)$ with distinct parameters $m, n \Leftrightarrow$ to increase the region of lengths and rates of BG codes

Designs and configurations

symmetric and resolvable non-symmetric
$2-(v, k, 1)$ design ($=$ Steiner system $S(2, k, v)$) :
every pair of elements lies in exactly one block
2 - $(v, k, 1)$ design $\Rightarrow J_{4}$-free matrix $M(v, k)$
Configuration $\left(v_{r}, b_{k}\right) \Rightarrow v$ elements, b blocks every block contains k points
every element belongs to r blocks
every pair of elements belongs to at most one block
Symmetric configuration : $v=b, r=k \quad \Rightarrow$
J_{4}-free matrix $M(v, k)$

Construction A in $P G(s, q)$

a single orbit of a collineation group in $P G(s, q)$

\mathcal{P} - a point orbit under the action of a collineation group in $P G(s, q)$ or $A G(s, q)$
$\mathcal{L}(\mathcal{P}, n)$ - the set of lines meeting \mathcal{P} in n points
incidence structure: points $=$ points of \mathcal{P} lines $=$ lines of $\mathcal{L}(\mathcal{P}, n)$ incidence $=$ incidence of the starting space
$M(m, n) \Leftrightarrow$ incidence matrix, $\quad m=|\mathcal{P}|, n \leq q+1$
Construction A works for any $2-(v, k, 1)$ design D and for any group of automorphisms of D

Theorem and Examples

Theorem. In Construction A the number of lines of $\mathcal{L}(\mathcal{P}, n)$ through a point of \mathcal{P} is a constant r_{n}

$$
n=r_{n} \Longrightarrow J_{4} \text {-free matrix } M(|\mathcal{P}|, n)
$$

Examples: \mathcal{P} is the set of internal points to a conic; $\mathcal{L}(\mathcal{P}, n)$ is the set of lines external to the conic.

$$
M(m, n): m=\frac{1}{2} q(q-1), n=\frac{1}{2}(q+1), q \text { odd }
$$

\mathcal{P} is the complement of a Baer subplane of $P G(2, q)$; $\mathcal{L}(\mathcal{P}, q)$ is the set of tangents to the subplane.

$$
M(m, n): m=q^{2}-\sqrt{q}<n^{2}, n=q, q \text { square }
$$

orbits of a Singer subgroup \widehat{S}_{d}

Singer group S - the cyclic collineation group of order $q^{2}+q+1$ in $P G(2, q)$
$d-$ any divisor of $q^{2}+q+1 . \quad t=\frac{q^{2}+q+1}{d}$
\widehat{S}_{d} - the unique cyclic subgroup of S of order d under the action of a cyclic collineation group the point set and the line set of a projective plane have the same cyclic structure
$O_{0}, O_{1}, \ldots, O_{t-1}$ - point orbits under the action of \widehat{S}_{d} $L_{0}, L_{1}, \ldots, L_{t-1}$ - line orbits under the action of \widehat{S}_{d}

Partition of $P G(2, q)$ into orbits

Theorem. Every line of the orbit L_{i} meets the orbit O_{j} in the same number of points $w_{j-i}(\bmod t)$

Incidence matrix of $P G(2, q)$

$$
V=\left[\begin{array}{ccccc}
C_{0,0} & C_{0,1} & C_{0,2} & \ldots & C_{0, t-1} \\
C_{1,0} & C_{1,1} & C_{1,2} & \ldots & C_{1, t-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
C_{t-1,0} & C_{t-1,1} & C_{t-1,2} & \ldots & C_{t-1, t-1}
\end{array}\right]
$$

$C_{i, j}-$ circulant $d \times d$ matrix of weight $w_{j-i}(\bmod t)$

matrix of weights of submatrices

$$
W=\left[\begin{array}{ccccccc}
w_{0} & w_{1} & w_{2} & w_{3} & \ldots & w_{t-2} & w_{t-1} \\
w_{t-1} & w_{0} & w_{1} & w_{2} & \ldots & w_{t-3} & w_{t-2} \\
w_{t-2} & w_{t-1} & w_{0} & w_{1} & \ldots & w_{t-4} & w_{t-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
w_{1} & w_{2} & w_{3} & w_{4} & \ldots & w_{t-1} & w_{0}
\end{array}\right]
$$

Circulant $d \times d$ matrix C of weight w \Downarrow
Circulant $d \times d$ matrix C^{\prime} of weight $w-\delta$

$$
V \Rightarrow V^{\prime} \quad W \Rightarrow W^{\prime}
$$

an union of orbits of \widehat{S}_{d}

Construction B in $P G(2, q)$

$\frac{m}{d} \times \frac{m}{d}$ submatrix of W^{\prime} :
sum of elements of every row and every column $=n$
\Downarrow
submatrix of V^{\prime} is a J_{4}-free matrix $M(m, n)$
game of blocks (bricks for children)
numerous matrices square and non-square n_{1} units in every row; n_{2} units in every column

$$
n_{1}=n_{2} \text { and } n_{1} \neq n_{2}
$$

Parity check matrix

$$
\left[\begin{array}{cccc}
c I_{m} & c I_{m} & \ldots & c I_{m} \\
\vdots & \vdots & \vdots & \vdots \\
c I_{m} & c I_{m} & \ldots & c I_{m} \\
c I_{m}^{(1)} & c I_{m}^{(2)} & \ldots & c I_{m}^{(n)} \\
\vdots & \vdots & \vdots & \vdots \\
c I_{m}^{(1)} & c I_{m}^{(2)} & \ldots & c I_{m}^{(n)}
\end{array}\right] . \quad I_{m} \text { - identity matrix }
$$

$M(m, n)$ - circulant. $I_{m}^{(v)}$ - circulant permutation $m \times m$ matrix obtained by decomposition of $M(m, n)$
Constants c are distinct!!! They comes from parity check matrices of the constituent codes:

$$
\mathcal{C}_{1}=\ldots=\mathcal{C}_{m} \quad \mathcal{C}_{m+1}=\ldots=\mathcal{C}_{2 m}
$$

Thank you

Mille grazie

Spasibo

Premnogo blagodarya

